Literatuur

CDC rapport Candida Auris
Inname vs uitscheiding van zilverwater
Bodemverarming
Ph.D dossier van Okinawa mineralen
Artikel NTVH 2017 ijzersuppletie
Nanodeeltjes van mineralen in de bodem
Rapport zilver veilig gebruik EPA
De veiligheid van oligodynamisch zilverwater
Voedingswaarden tabel van Ciba Geigy

 

  1. Thomas, D. (2003). A study on the mineral depletion of the foods available to us as a nation over the period 1940 to 1991. Nutr. Health, 17(2), 85-115.
    https://www.ncbi.nlm.nih.gov/pubmed/14653505
  2. Chowdhary A., Sharma C. & Meis JF. (2017). Candida auris: A rapidly emerging cause of hospital-acquired multidrug-resistant fungal infections globally. PLoS Pathogens, 13(5), 1-10. https://doi.org/10.1371/journal.ppat.1006290
  3. Abraham, G.E. (2008). Clinical Applications of Gold and Silver Nanocolloids. Original Internist, 9, 132-157.
  4. Sonavane, G., Tomoda, K. & Makino, K. (2008). Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids and Surfaces B: Biointerfaces, 66, 274-280.
  5. Harvard Medical School. “Mystery Solved: Gold’s Power Against Autoimmune Diseases Defined.” ScienceDaily, 27 February 2006. <www.sciencedaily.com/releases/2006/02/060227080942.htm>.
  6. Abraham, G.E. (2008). Clinical Applications of Gold and Silver Nanocolloids. Original Internist, 9, 132-157.
  7. Rentz, E.J. (2003). Viral Pathogens and Severe Acute Respiratory Syndrome: Oligodynamic Ag1 for Direct Immune Intervention. Journal of Nutritional & Environmental Medicine, 13(2), 109–118.
  8. Srinivasan, V. et al. (2018). Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). International Journal of Nanomedicine, 13, 2647–2663.
  9. Enyin Wang, E., Huang, Y., Du, Q. & Sun, Y. (2017). Silver nanoparticle induced toxicity to human sperm by increasing ROS (reactive oxygen species) production and DNA damage. Environmental Toxicology and Pharmacology, (52), 193-199.
  10. Rai, M.K., Deshmukh, S.D., Ingle, A.P. & Gade, A.K. (2012). Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria. Journal of Applied Microbiology, 112, 841–852.
  11. Ben, R., Wakshlak, K., Pedahzur, R. & Avnir, D. (2015). Antibacterial activity of silver killed bacteria: the “zombies” effect. Scientific Reports, 5.
  12. Noorbakhsh, F., Rezaie, S. & Shahverdi, A.R. (2011). Antifungal Effects of Silver Nanoparticle alone and with Combination of Antifungal Drug on Dermatophyte Pathogen Trichophyton Rubrum. International Conference on Bioscience, Biochemistry and Bioinformatics IPCBEE, 5, 364-367.
  13. Nowack, B., Krug, H.F. & Height M. (2010). 120 Years of Nanosilver History: Implications for Policy Makers. Environmental Science & Technology, A-G.
  14. Soo-Hwan, K. et al. (2011). Antibacterial Activity of Silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J. Microbiol. Biotechnol, 39(1), 77–85.
  15. Ramirez, J.R., Winkler, J.A., Spina, C.S. & Collins, J.J. (2013). Silver Enhances Antibiotic Activity Against Gram-Negative Bacteria. Science Translational Medicine, 5(190), 190-
  16. Rieznichenko, L. et al. (2013). Iron nano particles’ effectiveness for new antianemic preparations development. NANOCON, 10, 16-18.
  17. Yasuda, H., Yoshida, K., Yasada, Y. & Tsutsui, T. (2011). Infantile zinc deficiency: Association with autism spectrum disorders. SCIENTIFIC REPORTS, 1 (129), 1-5.
  18. Sakaue, Y., Kim, J. & Miyamoto, Y. Effects of TAT-conjugated platinum nanoparticles on lifespan of mitochondrial electron transport complex I-deficient Caenorhabditis elegans, nuo-1. International Journal of Nanomedicine, 2010:5 687–695.